Computationally Inexpensive Sequential Forward Floating Selection for Acquiring Signification Features for Authorship
نویسندگان
چکیده
Handwriting is individualistic. The uniqueness of shape and style of handwriting can be used to identify the significant features in authenticating the author of writing. Acquiring these significant features leads to an important research in Writer Identification domain where to find the unique features of individual which also known as Individuality of Handwriting. This paper proposes an improved Sequential Forward Floating Selection method besides the exploration of significant features for invarianceness of authorship from global shape features by using various wrapper feature selection methods. The promising results show that the proposed method is worth to receive further exploration in identifying the handwritten authorship.
منابع مشابه
Fast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets
Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...
متن کاملApplying Combined Approach of Sequential Floating Forward Selection and Support Vector Machine to Predict Financial Distress of Listed Companies in Tehran Stock Exchange Market
Objective: Nowadays, financial distress prediction is one of the most important research issues in the field of risk management that has always been interesting to banks, companies, corporations, managers and investors. The main objective of this study is to develop a high performance predictive model and to compare the results with other commonly used models in financial distress prediction M...
متن کاملA Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)
Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...
متن کاملA Comparative Study of Feature Selection
Handwriting is individualistic. The uniqueness of shape and style of handwriting can be used to identify the significant features in authenticating the author of writing. Acquiring these significant features leads to an important research in Writer Identification domain. This paper is meant to explore the usage of feature selection in Writer Identification. Various filter and wrapper feature se...
متن کاملFeature Selection Approach in Animal Classification
In this paper, we propose a model for automatic classification of Animals using different classifiers Nearest Neighbour, Probabilistic Neural Network and Symbolic. Animal images are segmented using maximal region merging segmentation. The Gabor features are extracted from segmented animal images. Discriminative texture features are then selected using the different feature selection algorithm l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011